Main Site
Search

Recent Posts
 BioStatistical Blog
 1. Statistic’s Dirty Little Secret
 1.A Another view on testing by Peter Flom, PhD
 1.B Am I a nattering nabob of negativism?
 2. Why do we compute pvalues?
 3. Meaningful ways to determine the adequacy of a treatment effect when you have an intuitive knowledge of the dependent variable
 4. Meaningful ways to determine the adequacy of a treatment effect when you lack an intuitive knowledge of the dependent variable
 5. Accepting the null hypothesis
 6. ‘Lies, Damned Lies, and Statistics’ part 1, and Analysis Plans, an essential tool
 7. Assumptions of Statistical Tests
Categories
Stat comments and Questions
 Allen Fleishman on 22. A question on QoL, Percentage Change from Baseline, and CompassionateUsage Protocols
 Kate on 22. A question on QoL, Percentage Change from Baseline, and CompassionateUsage Protocols
 Allen Fleishman on 24. Simple, but SimpleMinded
 Victor Levenson on 24. Simple, but SimpleMinded
 Allen Fleishman on 24. Simple, but SimpleMinded
 Victor Levenson on 24. Simple, but SimpleMinded
 Allen Fleishman on 12. Significant pvalues in small samples
 Merm on 12. Significant pvalues in small samples
 Allen Fleishman on 12. Significant pvalues in small samples
 Phil Assheton on 12. Significant pvalues in small samples
RSS Feeds
Category Archives: Ordinal
7a. Assumptions of Statistical Tests: Ordinal Data
In my ‘7. Assumptions of Statistical Tests‘, there was a glaring omission (at least glaring for me): no discussion of ordinal data. I felt that I let my readers down, by glossing over this issue. Time to repair my quite … Continue reading
9. Dichotomization as the Devils Tool
There are two types of people, those who classify people into two types of people and those who don’t. Never trust anyone over thirty. As Mason said to Dixon, ‘you gotta draw the line somewhere’. *** Don’t get me wrong, … Continue reading
Posted in Biostatistics, Dichotomization, Interval, Nominal, Ordinal, pvalues, Power, Statistics
Leave a comment
10. Parametric or nonparametric analysis – Why one is almost useless
… ‘If you lost your watch in that dark alley, why are we looking here?’ ‘Well, <hic> there’s light here.’ (old chestnut) *** In my last blog, I stated that we should avoid dichotomizing as it throws away a lot … Continue reading
22. A question on QoL, Percentage Change from Baseline, and CompassionateUsage Protocols
Yesterday was 1 degree Fahrenheit and today is 10. I’m ten times warmer!! Compassion? We statisticians have evolved beyond such petty human affects. I received the following question from Simon Wilkinson from New Zealand: Dear Allen. To set the scene, … Continue reading
23. Small N study to publish or not?
The following question was sent to me, I thought it useful enough for a full elaboration: Submitted on 2014/05/12 at 8:23 am Dr. Fleishman, I am so happy I found your site. I have been trying to decide how to best … Continue reading